A Framework for Recommending Resource Allocation Based on Process Mining

MICHAEL ARIAS ERIC ROJAS JORGE MUNOZ-GAMA MARCOS SEPÚLVEDA

Outline

Introduction

Approach

- General approach
- Resource allocation request
- Resource process cube and allocation metrics
- Implementation
- Experimental evaluation
- Future work
- Conclusions

Outline

Introduction

Approach

- General approach
- Resource allocation request
- Resource process cube and allocation metrics
- Implementation
- Experimental evaluation
- Future work
- Conclusions

Motivation

Motivation

Asignación 24 de oct	ubre
Para:	Agregar a contactos 24/10/2014 =
Buenos dias chic@s	
La asignación de hoy es la sigui	ente:
	B Assigned to : Francisco Calina (12)
	B Assigned to : Hubert (12)
	B Assigned to : Mariela (12) (12)
	B Assigned to: Noemy Cs (12)
Lindo dia© bendiciones	
Maria "	
Audit Specialist Programs Funds & Claims	

Human resource allocation: an important issue in Business Process Management

	[1]	[2]	[5]	[6]	[7]	[3]	[4]	[8]	Proposed
Activity profile		\checkmark							\checkmark
Resource profile	\checkmark	\checkmark			\checkmark			\checkmark	\checkmark
Performance & quality									\checkmark
Resource meta-model	\checkmark				\checkmark			\checkmark	\checkmark
History	\checkmark								
Process mining tool		\checkmark			\checkmark				\checkmark
Allocation at sub-process level									\checkmark

[9] Zhao, W., Zhao, X.: Process mining from the organizational perspective, 2014

	[1]	[2]	[5]	[6]	[7]	[3]	[4]	[8]	Proposed
Activity profile		\checkmark							\checkmark
Resource profile	\checkmark	\checkmark			\checkmark			\checkmark	\checkmark
Performance & quality									\checkmark
Resource meta-model	\checkmark				\checkmark			\checkmark	\checkmark
History	\checkmark								
Process mining tool		\checkmark			\checkmark				\checkmark
Allocation at sub-process level									\checkmark

General idea

Outline

Introduction

Approach

- General approach
- Resource allocation request
- Resource process cube and allocation metrics
- Implementation
- Experimental evaluation
- Future work
- Conclusions

Help-Desk process

Resource process cube (Q)

Implementation with BPA [10]

Position	Freq	uency	Perfoi	rmance	Qu	ality				
	Data Item	Local Score	Data Item	Local Score	Data Item	Local Score	ł		••	•
1	R6	0.601	R3	0.851	R9	0.913		J	•••	
2	R4	0.593	R2	0.833	R7	0.864				
3	R5	0.554	R1	0.832	R8	0.808				
4	R1	0.525	R5	0.775	R2	0.723				
						•••				
										•

1						
Overall top						
Data item	Score					
R1	0.795					
R2	0.788					
R14	0.784					

[10] Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for ecient top-k query processing, 2011

Outline

Introduction

Approach

- General approach
- Resource allocation request
- Resource process cube and allocation metrics
- Implementation
- **Experimental evaluation** Future work

Conclusions

Experimental evaluation

Help-Desk process

Preliminary evaluation

Case attributes	Case ID, Sub-process group, Process typology Resource, Cost, Customer satisfaction (quality) Creation date, Closing date, Priority
Experiment 1	Calculate the top 3-queries processing over the sorted lists, considering each single metric by itself.
Experiment 2	3 types of companies: large size, mid size, and small size
Experiment 3	Different event log sizes and the amount of resources were increased

Experimen <u>t 1</u>	Weights (%)	#Cases	#R SP1	#R SP2	Ranking	${f Time}\ ({ m sec})$	
1.1	F:100 - others:0	1200	20	20	R06: 0.601 - R04: 0.593 - R05: 0.554	0.954	
Top 3-queries	P:100 - others:0	1200	20	20	R03: 0.851 - R02: 0.833 - R01: 0.832	0.954	
	Q:100 - others:0	1200	20	20	R09: 0.913 - R07: 0.864 - R08: 0.808	0.954	
Single metric ₄	C:100 - others:0	1200	20	20	R18: 0.962 - R20: 0.962 - R19: 0.959	0.954	
1.5	U:100 - O:100 - others:0	1200	20	20	R12: 1.000 - R13: 1,000 - R14: 1.000	0.954	
2.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	20	20	R20: 0.647 - R03: 0.635 - R18: 0.632	11.122	
2.2	F:025 - P:015 - Q:100 C:030 - U:075 - O:065	1200	20	20	R19: 0.802 - R14: 0.758 - R13: 0.754	11.565	
2.3	F:050 - P:050 - Q:050 C:050 - U:050 - O:050	1200	20	20	R19: 0.725 - R03: 0.712 - R02: 0.675	10.897	
3.1.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	14	14	R01: 0.795 - R02: 0.788 - R14: 0.784	10.942	
3.1.2	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	10000	14	14	R13: 0.769 - R02: 0.567 - R14: 0.758	17.160	
3.1.3	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	100000	14	14	R13: 0.767 - R14: 0.765 - R02: 0.764	59.063	
3.2.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	20	20	R19: 0.649 - R20: 0.647 - R03: 0.635	11.122	
3.2.2	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	10000	20	20	R01: 0.586 - R03: 0.582 - R02: 0.573	17.642	
3.2.3	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	100000	20	20	R01: 0.834 - R20: 0.784 - R18: 0.783	58.913	
3.3.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	35	35	R03: 0.626 - R05: 0.618 - R04: 0.572	11.014	
3.3.2	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	10000	35	35	R04: 0.608 - R05: 0.603 - R01: 0.599	17.739	
3.3.3	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	100000	35	35	R04: 0.593 - R02: 0.580 - R11: 0.428	58.637	

	Exp.	Weights (%)	# Cases	#R SP1	$_{\rm SP2}^{\# \rm R}$	Ranking	${f Time}\ ({ m sec})$
	1.1	F:100 - others:0	1200	20	20	R06: 0.601 - R04: 0.593 - R05: 0.554	0.954
	1.2	P:100 - others:0	1200	20	20	R03: 0.851 - R02: 0.833 - R01: 0.832	0.954
	1.3	Q:100 - others:0	1200	20	20	R09: 0.913 - R07: 0.864 - R08: 0.808	0.954
	1.4	C:100 - others:0	1200	20	20	R18: 0.962 - R20: 0.962 - R19: 0.959	0.954
	1.5	U:100 - O:100 - others:0	1200	20	20	R12: 1.000 - R13: 1.000 - R14: 1.000	0.954
	2.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	20	20	R20: 0.647 - R03: 0.635 - R18: 0.632	11.122
	2.2	F:025 - P:015 - Q:100 C:030 - U:075 - O:065	1200	20	20	R19: 0.802 - R14: 0.758 - R13: 0.754	11.565
es	2.3	F:050 - P:050 - Q:050 C:050 - U:050 - O:050	1200	20	20	R19: 0.725 - R03: 0.712 - R02: 0.675	10.897
	3.1.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	14	14	R01: 0.795 - R02: 0.788 - R14: 0.784	10.942
	3.1.2	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	10000	14	14	R13: 0.769 - R02: 0.567 - R14: 0.758	17.160
	3.1.3	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	100000	14	14	R13: 0.767 - R14: 0.765 - R02: 0.764	59.063
	3.2.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	20	20	R19: 0.649 - R20: 0.647 - R03: 0.635	11.122
	3.2.2	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	10000	20	20	R01: 0.586 - R03: 0.582 - R02: 0.573	17.642
	3.2.3	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	100000	20	20	R01: 0.834 - R20: 0.784 - R18: 0.783	58.913
	3.3.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	35	35	R03: 0.626 - R05: 0.618 - R04: 0.572	11.014
	3.3.2	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	10000	35	35	R04: 0.608 - R05: 0.603 - R01: 0.599	17.739
	3.3.3	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	100000	35	35	R04: 0.593 - R02: 0.580 - R11: 0.428	58.637

Experiment 2

Top 3-queries 3 help desk companies

	Exp.	Weights $(\%)$	$\# \\ \mathrm{Cases}$	#R SP1	$_{ m SP2}^{\# m R}$	Ranking	${f Time}\ ({ m sec})$
	1.1 1.2 1.3 1.4 1.5	F:100 - others:0 P:100 - others:0 Q:100 - others:0 C:100 - others:0 U:100 - O:100 - others:0	1200 1200 1200 1200 1200	20 20 20 20 20 20	20 20 20 20 20 20	R06: 0.601 - R04: 0.593 - R05: 0.554 R03: 0.851 - R02: 0.833 - R01: 0.832 R09: 0.913 - R07: 0.864 - R08: 0.808 R18: 0.962 - R20: 0.962 - R19: 0.959 R12: 1.000 - R13: 1.000 - R14: 1.000	0.954 0.954 0.954 0.954 0.954
	2.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000 F:025 - P:015 - O:100	1200	20	20	R20: 0.647 - R03: 0.635 - R18: 0.632	11.122
	2.2 2.3	$\begin{array}{c} C:030 - U:075 - O:065 \\ F:050 - P:050 - Q:050 \\ C:050 - U:050 - O:050 \\ \end{array}$	1200 1200	20 20	20 20	R19: 0.802 - R14: 0.758 - R13: 0.754 R19: 0.725 - R03: 0.712 - R02: 0.675	11.565 10.897
Experiment 3	3.1.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	14	14	R01: 0.795 - R02: 0.788 - R14: 0.784	10.942
	3.1.2	F:010 - P:050 - Q:010 C:100 - U:015 - O:000 F:010 - P:050 - O:010	10000	14	14	R13: 0.769 - R02: 0.567 - R14: 0.758	17.160
Top 3-queries	3.1.3	C:100 - U:015 - O:000 F:010 - P:050 - Q:010	100000	14	14	R13: 0.767 - R14: 0.765 - R02: 0.764	59.063
Log size	3.2.1 3.2.2	C:100 - U:015 - O:000 F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	20 20	20 20	R19: $0.649 - R20: 0.647 - R03: 0.635$ R01: $0.586 - R03: 0.582 - R02: 0.573$	11.122 17.642
Amount of resources	3.2.3	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	100000	20	20	R01: 0.834 - R20: 0.784 - R18: 0.783	58.913
	3.3.1	F:010 - P:050 - Q:010 C:100 - U:015 - O:000	1200	35	35	R03: 0.626 - R05: 0.618 - R04: 0.572	11.014
	3.3.2	F:010 - P:050 - Q:010 C:100 - U:015 - O:000 F:010 - P:050 - O:010	10000	35	35	R04: 0.608 - R05: 0.603 - R01: 0.599	17.739
	3.3.3	C:100 - U:015 - O:000	100000	35	35	R04: 0.593 - R02: 0.580 - R11: 0.428	58.637

(a) Number of cases (thousands)

(b) Number of resources

Performance analysis

Outline

Introduction

Approach

- General approach
- Resource allocation request
- Resource process cube and allocation metrics
- Implementation
- Experimental evaluation
- Future work
- Conclusions

Future work

Explore potential application domains

Case studies using real data

Incorporate new dimensions

Combine our approach with existing works

Outline

Introduction

Approach

- General approach
- Resource allocation request
- Resource process cube and allocation metrics
- Implementation
- Experimental evaluation
- Future work

Conclusions

Conclusions

Consider different perspectives	Multi – factor criteria
New allocation technique	Sub-process level
Fine-grained, generic, & extensible	Experimental evaluation
BPA allows obtain a final ranking	Synthetic data

THANK YOU FOR YOUR ATTENTION

A Framework for Recommending Resource Allocation Based on Process Mining

MICHAEL ARIAS ERIC ROJAS JORGE MUNOZ-GAMA MARCOS SEPÚLVEDA